
TWO-WAY MODELS FOR GRAVITY

SUPPLEMENTARY MATERIAL

Koen Jochmans∗

Draft: February 2, 2015 Revised: November 18, 2015

This version: April 11, 2016

I. Proofs of theorems in the main text

Proof of Theorem 1. We establish consistency by verifying Conditions (i)–(iv) of

Theorem 2.1 in Newey and McFadden (1994). Assumptions 1 and 2 imply that

Conditions (i)–(iii) hold. Condition (iv) states that s(ψ) converges in probability

to s(ψ) uniformly on S and remains to be shown. By definition we need to show

that

lim
n→∞

Pr

(
sup
ψ∈S
‖s(ψ)− E[s(ψ)]‖ > ε

)
= 0

for any ε > 0.

By symmetry,

s(ψ)− E[s(ψ)] =
%−1

4

n∑
i=1

n∑
j=1

∑
i′ 6=i

∑
j′ 6=j

v({i, i′, j, j′}, ψ),

where v({i, i′, j, j′}, ψ) = v({i, i′, j, j′}, ψ)− E[v({i, i′, j, j′}, ψ)] and we introduce

the notational shorthand

v({i, i′, j, j′}, ψ) = φ(xij , xij′ , xi′j , xi′j′ ;ψ0)(uij(ψ)ui′j′(ψ)− uij′(ψ)ui′j(ψ)).
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By the Cauchy-Schwarz inequality,

E[‖φ(xij , xij′ , xi′j , xi′j′ ;ψ)uij(ψ)ui′j′(ψ)‖2]2

is bounded by

E[‖φ(xij , xij′ , xi′j , xi′j′ ;ψ)‖4]×
√
E[‖uij(ψ)‖8]

√
E[‖ui′j′(ψ)‖8].

By Assumption 4, these terms are uniformly bounded on S for any i, i′, j, j′.

Therefore, there exists a constant C so that

E[‖v({i, i′, j, j′}, ψ)‖2] < C.

This, in turn, implies that the variance of s(ψ) is uniformly bounded. Chebychev’s

inequality yields

Pr (‖s(ψ)− E[s(ψ)]‖ > ε) ≤ E[‖s(ψ)− E[s(ψ)]‖2]

ε
.

The numerator on the right-hand side is bounded by

∑n
i1=1

∑n
j1=1

∑
i2 6=i1

∑
j2 6=j1∑n

i3=1

∑n
j3=1

∑
i4 6=i3

∑
j4 6=j3

E[‖v({i1, i2, j1, j2}, ψ)‖ ‖v({i3, i4, j3, j4}, ψ)‖]

16%2

The covariance between v({i1, i2, j1, j2}, ψ) and v({i3, i4, j3, j4}, ψ) depends on

how many of the indices are common across the quadruples (i1, i2, j1, j2) and

(i3, i4, j3, j4). The correlation is non-zero as soon as these sets overlap. When

the sets are disjoint, the terms v({i1, i2, j1, j2}, ψ) and v({i3, i4, j3, j4}, ψ) are

independent by virtue of Assumption 3. Of the O(n8) possible combinations

of observations, O(n7) combinations have dyads that overlap. Hence, uniformly
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on S,

Pr (‖s(ψ)− E[s(ψ)]‖ > ε) = O(n−1),

which converges to zero as n→∞ for any ε > 0. Therefore, uniform convergence

of the empirical moment condition s(ψ) to s(ψ) has been established. With

all conditions of Theorem 2.1 in Newey and McFadden (1994) fullfilled we have

established that

ψn − ψ0
p→ 0

as n→∞. The proof is complete.

Proof of Theorem 2. The proof proceeds in three steps. We first show (2.2). We

next establish the uniform convergence of the Jacobian matrix of the moment

conditions. We then combine these results with a Taylor expansion to establish

that

(a) n (ψn − ψ0) = −(Σ′ΩΣ)−1Σ′Ω
1

n

n∑
i=1

n∑
j=1

wij (εij − 1) + op(1),

and apply a suitable central limit theorem to the right-hand side of this equation

to validate Theorem 2.

(i) Asymptotic approximation of the moment conditions. At ψ0 the empirical

moment conditions are

s(ψ0) =
%−1

4

n∑
i=1

n∑
j=1

∑
i′ 6=i

∑
j′ 6=j

φ(xij , xij′ , xi′j , xi′j′ ;ψ0)(uij ui′j′ − uij′ ui′j),(b)

where we have exploited the symmetry of s(ψ0) in (i, i′) and (j, j′). A small

calculation shows that the Hájek projection (van der Vaart, 2000, Section 11.3)

of s(ψ0), conditional on the covariates, equals

pn =
1

n2

n∑
i=1

n∑
j=1

wij (εij − 1).
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Note that E[ pn |x11, . . . , xnn] = 0 and that

V∗ = n2 var(pn) =
1

n2

n∑
i=1

n∑
j=1

E[wijw
′
ij σ

2
ij ].

To show that s(ψ0) is asymptotically equivalent to pn in the sense of (2.2) it

suffices to show that

(c) n2E[(pn − s(ψ0))(pn − s(ψ0))′]→ 0

as n→∞ (see, e.g., van der Vaart 2000, Chapter 12).

The main step needed to establish (c) is the calculation of the variance of the

moment conditions s(ψ0). Use (b) to see that var(s(ψ0)) = E[s(ψ0)s(ψ0)′] equals

the expectation of the matrix

%−1

4

n∑
i1=1

∑
i2 6=i1

n∑
j1=1

∑
j2 6=j1

φ(xi1j1 , xi1j2 , xi2j1 , xi2j2 ;ψ0) (ui1j1 ui2j2 − ui1j2 ui2j1)

×%
−1

4

n∑
i3=1

∑
i4 6=i3

n∑
j3=1

∑
j4 6=j3

φ(xi3j3 , xi3j4 , xi4j3 , xi4j4 ;ψ0)′(ui3j3 ui4j4 − ui3j4 ui4j3).

(d)

Because uij = αiγj εij and the εij are independent across both i and j, we have

that

E[(ui1j1 ui2j2 − ui1j2 ui2j1)(ui3j3 ui4j4 − ui3j4 ui4j3)|x11, . . . , xnn](e)

equals zero unless any of the dyads in {(i1, j1), (i2, j2), (i1, j2), (i2, j1)} co-incides

with any of the dyads in {(i3, j3), (i4, j4), (i3, j4), (i4, j3)}. Of the O(n8) terms in

var(s(ψ0)), O(n6) have at least dyad in common. Moreover, the number of terms

with two or more dyads in common is O(n4). Because

var(s(ψ0)) =
O(n6)

%2
=
O(n6)

O(n8)
= O(n−2),
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only terms with at least one dyad in common provide a non-zero contribution to

the asymptotic variance. By symmetry of (d), all the expressions are permutation

invariant and so we are free to choose a dyad that is common across terms in

our calculations and multiply through the resulting expression by 42, thereby

accounting for all possible choices. With (i3, j3) = (i1, j1), the expectation in (e)

equals

(f) α2
i1γ

2
j1αi2γj2αi4γj4 σ

2
i1j1 ,

Setting (i3, j3) = (i1, j1) in (d), and using (f) and the definition of wij given in

the text we find

n2 var(s(ψ0)) = V∗ + o(1).

The same argument can be used to show that n2E[s(ψ0) p′n] = V∗ + o(1). Hence,

E[(pn − s(ψ0))(pn − s(ψ0))′] = o(n−2)

and (c) has been shown.

(ii) Uniform convergence of the Jacobian matrix. Differentiating s(ψ) gives the

Jacobian as

%S(ψ)=
n∑
i=1

∑
i<i′

n∑
j=1

∑
j<j′

φ(xij , xij′ , xi′j , xi′j′ ;ψ)
∂(uij(ψ)ui′j′(ψ)− ui′j(ψ)uij′(ψ))

∂ψ′

+
∂φ(xij , xij′ , xi′j , xi′j′ ;ψ)

∂ψ
(uij(ψ)ui′j′(ψ)− ui′j(ψ)uij′(ψ)).

Convergence of the second term to its expectation follows as in the proof of

Theorem 1, with φ′ replacing φ, by Assumptions 4 and 5. For the first term,

observe that
∂(uij(ψ)ui′j′(ψ)− ui′j(ψ)uij′(ψ))

∂ψ′
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equals

ui′j(ψ)uij′(ψ)(τ(xi′j ;ψ)′+τ(xij′ ;ψ)′)− uij(ψ)ui′j′(ψ)(τ(xij ;ψ)′+τ(xi′j′ ;ψ)′).

Assumptions 4 and 5 imply that

E[‖φ(xij , xij′ , xi′j , xi′j′ ;ψ)uij(ψ)ui′j′(ψ) τ(xij ;ψ)′‖2] < C

for some finite constant C. Therefore, again by the same argument as in the

proof of Theorem 1, this term converges uniformly to its expectation which, as

will be verified below, equals Σ. By Theorem 1, ‖ψn − ψ0‖ = op(1) as n → ∞.

Therefore,

‖S(ψ)−Σ‖ p→ 0

for any ψ that lies in between ψn and ψ0. This conclusion, together with the

asymptotic equivalence of s(ψ0) and pn, can be combined with a mean-value

expansion of s(ψn) around ψ0 to obtain the sampling-error representation for

n (ψn − ψ0) in (a).

To see that the limit of the expectation of S(ψ0) equals Σ, first note that the

term involving φ′ drops out because

E[φ′(xij , xij′ , xi′j , xi′j′ ;ψ0) (uijui′j′ − ui′juij′)] = 0.

Therefore, up to op(1), S(ψ0) equals

%−1
n∑
i=1

∑
i<i′

n∑
j=1

∑
j<j′

E[φ(xij , xij′ , xi′j , xi′j′ ;ψ0) ((τi′j+τij′)−(τij+τi′j′))
′ αiαi′γjγj′ ],

where we let τij = τ(xij ;ψ0). Exploit symmetry and expand the sum on the
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right-hand side to see that

S(ψ0) =
%−1

4

n∑
i=1

∑
i′ 6=i

n∑
j=1

∑
j′ 6=j

E[φ(xij , xij′ , xi′j , xi′j′ ;ψ0) (αiαi′γjγj′) τ
′
i′j ]

+
%−1

4

n∑
i=1

∑
i′ 6=i

n∑
j=1

∑
j′ 6=j

E[φ(xij , xij′ , xi′j , xi′j′ ;ψ0) (αiαi′γjγj′)τ
′
ij′ ]

− %−1

4

n∑
i=1

∑
i′ 6=i

n∑
j=1

∑
j′ 6=j

E[φ(xij , xij′ , xi′j , xi′j′ ;ψ0) (αiαi′γjγj′)τ
′
ij ]

− %−1

4

n∑
i=1

∑
i′ 6=i

n∑
j=1

∑
j′ 6=j

E[φ(xij , xij′ , xi′j , xi′j′ ;ψ0) (αiαi′γjγj′)τ
′
i′j′ ] + op(1).

By permutation invariance, the fourth right-hand side term is identical to the

third while the first and second right-hand side terms are identical to the third

up to sign. Collapsing the four expressions on the right-hand side and using the

definition of wij we therefore find that

S(ψ0) = − 1

n2

n∑
i=1

n∑
j=1

E[wij τ
′
ij ] + op(1)→ Σ

as n→∞.

(iii) Central limit theorem. Steps (i) and (ii) validate the linear approximation

stated in (a). Theorem 2 will then follow by showing that

(g) nV −1/2 pn
d→ N(0, I),

where I denotes the identity matrix of conformable dimension. To do so note that,

conditional on x11, . . . , xnn, the Hájek projection pn is an average of independent

heterogeneously-distributed zero-mean random variables with variance n−2W∗,

where

W∗ =
1

n2

n∑
i=1

n∑
j=1

wijw
′
ij σ

2
ij .

By virtue of Assumption 4, pn satisfies Lyapunov’s condition and so, applying a
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conditional version of the central limit theorem (see, e.g., Prakasa Rao 2009), we

have

nW
−1/2
∗ pn

d→ N(0, I),

conditional on x11, . . . , xnn. Now, ‖W∗ − V ‖ ≤ ‖W∗ − V∗‖ + ‖V∗ − V ‖ by the

triangle inequality, and each of these right-hand side terms converges to zero in

probability as n → ∞. Therefore, the conditional limit distribution of n pn is

normal with zero mean and constant covariance V . Because this distribution is

independent of the covariate values x11, . . . , xnn it equals the unconditional limit

distribution. This yields (g). Therefore, the theorem has been shown.

II. Instrument calculations

We calculate instruments as in Chamberlain (1987) for 2× 2 (one-quad) data (so

that there is only one conditional moment condition) for exponential-regression

models.

Write ϕij = ϕ(x′ijψ), let ϕ′ij denote the first derivative, and let σ2
ij denote

the conditional variance of εij . A small calculation reveals that Chamberlain’s

instrument here equals

A =
1

α1α2γ1γ2

(
ϕ′11
ϕ11

x11 +
ϕ′22
ϕ22

x22

)
−
(
ϕ′12
ϕ12

x12 +
ϕ′21
ϕ21

x21

)
σ2

11 + σ2
22 + σ2

11σ
2
22 + σ2

12 + σ2
21 + σ2

12σ
2
21

,

which is a function of the fixed effects.

In an exponential-regression model, ϕ′ij/ϕij = 1 and the numerator of A simplifies

to

(h) (x11 − x12)− (x21 − x22).

When errors are homoskedastic with variance σ2, the denominator in the second

term of A simplifies to 2σ2(2 + σ2). When data is Poisson distributed, this term
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has the more complicated form

1 + ϕ11α1γ1 + ϕ22α2γ2

ϕ11ϕ22
+

1 + ϕ12α1γ2 + ϕ21α2γ1

ϕ12ϕ21
.

The full expression for A in the Poisson case then becomes

(i) A =
(x11 − x12)− (x21 − x22)ϕ11ϕ22ϕ12ϕ21

Q
,

where

Q = ϕ12ϕ21 + ϕ11ϕ12ϕ21α1γ1 + ϕ12ϕ21ϕ22α2γ2

+ ϕ11ϕ22 + ϕ11ϕ12ϕ22α1γ2 + ϕ11ϕ21ϕ22α2γ1.

This depends on the fixed effects.

In the one-way Poisson model for short panel data (see, e.g., Wooldridge 1999),

where outcomes yij (given xij and αi) are Poisson distributed with conditional

mean

ex
′
ijψαi,

the maximum-likelihood estimator uses the optimal instrument, which does not

depend on the αi (Hahn 1997a,b). This is so because the αi cancel out in the

numerator and denominator of (the corresponding version of) A. This is no

longer true in the two-way model considered here. The cause is that, while in the

one-way model the moment condition is based on differencing of first moments,

in the two-way model here, we difference second-order moments. There might

be a connection between this finding and the fact that the Poisson first-order

conditions are not unbiased (see Charbonneau 2013 for an example of this later

fact).
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III. Computationally-efficient moment evaluation

The empirical moment vector of the GMM estimator is a fourth-order U-statistic.

Brute-force evaluation of s(ψ) requires O(n4) operations. Consequently, for large

n, the computational cost of such an approach may be prohibitive. Fortunately,

careful inspection of s(ψ) shows that it can be computed much more efficiently;

in some cases even without looping over any of the indices, making calculation

extremely fast. Here, we illustrate this for the estimators GMM1 and GMM2 (as

defined in the main text).

Recall that the empirical moment for GMM1 is

s(ψ) = %−1
n∑
i=1

∑
i<i′

n∑
j=1

∑
j<j′

(xij−xij′)−(xi′j−xi′j′)(uij(ψ)ui′j′(ψ)−uij′(ψ)ui′j(ψ)).

First exploit symmetry across both i and i′ and across j and j′, and note that

terms for which either i = i′ or j = j′ are zero for any ψ, to see that

(j) s(ψ) = %−1
n∑
i=1

n∑
i′=1

n∑
j=1

n∑
j′=1

xij (uij(ψ)ui′j′(ψ)− uij′(ψ)ui′j(ψ)).

By evaluating each of the terms of the summand in (j), we obtain

(k) s(ψ) = %−1
n∑
i=1

n∑
j=1

xij (uij(ψ)u(ψ)− ui·(ψ)u·j(ψ)) ,

where we define

ui·(ψ) =
n∑
j=1

uij(ψ), u·j(ψ) =
n∑
i=1

uij(ψ), u(ψ) =
n∑
i=1

n∑
j=1

uij(ψ).

Computation of s(ψ) using (k) is immediate in any matrix-based language. A

computationally-efficient representation of the Jacobian follows readily in the

same way.
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Proceeding similarly for GMM2 yields

s(ψ) = %−1
n∑
i=1

n∑
i′=1

n∑
j=1

n∑
j′=1

xij
(
yijyi′j′ ϕij′(ψ)ϕi′j(ψ)− yi′jyij′ ϕij(ψ)ϕi′j′(ψ)

)
= %−1

n∑
i=1

n∑
j′=1

xij
(
yij aij(ψ)− ϕij(ψ) bij(ψ)

)
,

for

aij(ψ) =
n∑

i′=1

n∑
j′=1

yi′j′ ϕi′j(ψ)ϕij′(ψ), bij(ψ) =
n∑

i′=1

n∑
j′=1

ϕi′j′(ψ) yi′j yij′ .

Matlab routines that perform rapid calculation of both GMM1 and GMM2 (as

well as the associated standard errors, as defined in the main text) are available

as supplementary material.
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